人工智能机器学习的算法模型的应用实践

 1956年,美国达特茅斯大学会议标志着人工智能研究的正式诞生,推动了了全球第一次人工智能浪潮。但这一次人工智能的春天只持续了20年,原因是当时过于重视算法和方法论,而导致了人工智能在处理问题范围的局限性。


  如今,人工智能研究的发展已经历了近六十年的沉浮,从硬件的计算能力、到深度学习算法、计算机视觉技术和自然语言处理等各领域都有了本质上的飞跃,人工智能已经从一个学术层面上的探索发展成一种可推动产业结构变革的新兴生产方式。


人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。


  人工智能在各个行业展开了大范围应用探索,并取得了不少突出进展。目前,人脸识别在各地警方监控、火车机场进出站甚至高校课堂都得到了应用;不少医院也开展了图像辅助诊断尝试;众多多法院引入了AI庭审语音转录系统;无人驾驶汽车大规模路测;国家科技部也公布依托国家新一代人工智能开放创新平台,大力推进面向行业应用领域的技术。人工智能的应用,离不开传统的机器学习算法,传统的机器学习算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。


决策树


  根据一些 feature(特征) 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。


 随机森林

  在源数据中随机选取数据,组成几个子集:


  S矩阵是源数据,有1-N条数据,A、B、C 是feature,最后一列C是类别,由S随机生成M个子矩阵,这M个子集得到 M 个决策树:将新数据投入到这M个树中,得到M个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果。

  逻辑回归

  当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。

所以此时需要这样的形状的模型会比较好:


所以此时需要这样的形状的模型会比较好:

  那么怎么得到这样的模型呢?

  这个模型需要满足两个条件 “大于等于0”,“小于等于1” 。大于等于0 的模型可以选择绝对值,平方值,这里用指数函数,一定大于0;小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了。

  神经网络

  Neural Networks适合一个input可能落入至少两个类别里:NN由若干层神经元,和它们之间的联系组成。 第一层是input层,最后一层是output层。在hidden层和output层都有自己的classifier。input输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output层的节点上的分数代表属于各类的分数,下图例子得到分类结果为class 1;同样的input被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和bias,这也就是forward propagation。


  此外,还有K均值算法、K近邻算法、朴素贝叶斯、关联分析算法、聚类分析、深度学习等算法在人工智能机器学习领域也是常用的算法模型。

  在机器学习中,我们通常考虑三种类型的学习:

  强化学习 这是关于代理应该如何行动以获得最大化奖励的问题,它受行为心理学理论的启发。在特定情况下,机器挑选一个动作或一系列动作并获得奖励。强化学习通常用于教机器玩游戏和赢得比赛,比如国际象棋、西洋双陆棋、围棋或简单的视频游戏。强化学习存在的问题是,单纯地强化学习需要海量的试错才能学会简单的任务。

监督学习 基本上,监督学习就是我们告诉机器特定输入的正确答案:这是一幅汽车的图像,正确答案是“汽车”。它之所以被称为监督学习,是因为算法从带标签数据学习的过程类似于向年幼的孩子展示图画书。成年人知道正确的答案,孩子根据前面的例子做出预测。这也是训练神经网络和其他机器学习体系结构最常用的技术。举个例子:给出你城市中大量房屋的描述及其价格,尝试预测你自己家房子的售价。

  无监督学习 人类和大多数其他动物学习,是在其生命的前几个小时、几天、几个月和几年,以没有人监督的方式学习:我们通过观察和得知我们行动的结果了解世界如何运作。没有人告诉我们所看到的每一个对象的名称和功能。我们学会非常基本的概念,比如世界是三维的,物体不会自行消失,没有支撑的物体会往下落。当前我们还不知道如何在机器身上实现这一点,至少无法达到人类和其他动物的水平。缺乏用于无监督或预测学习的AI技术,是限制当前AI发展的原因之一。

  随着AI、机器学习和智能机器人变得越来越普遍,在这些机器人将在制造、培训、销售、维修和车队管理方面担任新的岗位。人工智能和机器人将能够实现今天难以想象的新服务。但很显然,医疗保健和交通运输将是AI第一批颠覆的行业:


1.自动驾驶:与自动驾驶伴生的概念还有无人驾驶、智能驾驶。

2.计算机视觉:动静态图像识别与人脸识别

3、智能医疗:以可穿戴设备等为代表,当前智能医疗被认为是人工智能大板块当中颇具潜力的领域之一。


  越来越多的人类智力活动将与智能机器一起进行。我们的智慧是我们成为人的根本,AI则是这种属性的延伸。

  在通往打造真正智能机器的道路上,我们正在发现新的理论、新的原则、新的方法和新的算法,这些都将产生应用,并将改善我们今天、明天乃至明年的日常生活。这些技术很快被用于造福人类的产品和服务,比如图像识别、自然语言理解等等。国内包含东方金信在内的多个公司也正在人工智能道路上砥砺前行,不断深挖深掘,为这一行业提供更多的力量。


留下评论

您的电子邮箱地址不会被公开。

2 + 15 =